Electrocoagulation of Palm Oil Mill Effluent for Treatment and Hydrogen Production Using Response Surface Methodology

نویسندگان

  • Ansori Nasution
  • Bee Lan Ng
  • Ehsan Ali
  • Zahira Yaakob
  • Siti Kartom Kamarudin
چکیده

Palm oil mill effluent from the palm oil processing industry has been documented as a cause of severe damages to aquatic systems and a significant increase in greenhouse gases. This study was designed to use electrocoagulation for the pre-treatment of palm oil mill effluent to simultaneously reduce the pollutants and produce hydrogen gas. In this research, response surface methodology was applied to evaluate the effects of the main process parameters (voltage supply, retention time, and the addition of sodium chloride) in removing chemical oxygen demand, turbidity and metals from palm oil mill effluent. Response surface methodology was also applied to optimize the production of hydrogen gas from palm oil mill effluent during the electrocoagulation process. The obtained quadratic regression model has a high variance coefficient (R) value, which is greater than 85%. The optimal conditions to achieve highly efficient wastewater treatment and maximum hydrogen gas production were determined to be 4 volts, 6 hours retention time, and no added NaCl. At optimal conditions, electrocoagulation was able to remove 42.94% chemical oxygen demand (COD), 83.16% turbidity, 23.62% Fe, 27.56% Mg, and 47.83% Ca. Additionally, the production of hydrogen gas (28.87%) was also achieved, which enhances the cost effectiveness of the process.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of temperature and initial pH on biohydrogen production from palm oil mill effluent: long-term evaluation and microbial community analysis

Anaerobic sludge from palm oil mill effluent (POME) treatment plant was used as a source of inocula for the conversion of POME into hydrogen. Optimization of temperature and initial pH for biohydrogen production from POME was investigated by response surface methodology. Temperature of 60oC and initial pHof 5.5 was optimized for anaerobic microflora which gave a maximum hydrogen production of 4...

متن کامل

Phytoremediation of Palm Oil Mill Effluent by using Pistia Stratiotes Plant and Algae Spirulina sp for Biomass Production (RESEARCH NOTE)

Producing crude palm oil (CPO) will have side effect on producing palm oil mill effluent (POME).  Besides of high COD /BOD contents, POME still contains high amount of nutrients (nitrogen, phosphor and mineral). Traditional treatment of palm oil mill effluent using facultative anaerobic method not fully eliminated COD and BOD into allowable limit. The objective of this research was to utilize p...

متن کامل

Electrocoagulation of Palm Oil Mill Effluent

Electrocoagulation (EC) is an electrochemical technique which has been employed in the treatment of various kinds of wastewater. In this work the potential use of EC for the treatment of palm oil mill effluent (POME) was investigated. In a laboratory scale, POME from a factory site in Chumporn Province (Thailand) was subjected to EC using aluminum as electrodes and sodium chloride as supporting...

متن کامل

Modeling BOD and COD removal from Palm Oil Mill Secondary Effluent in floating wetland by Chrysopogon zizanioides (L.) using response surface methodology.

While the oil palm industry has been recognized for its contribution towards economic growth and rapid development, it has also contributed to environmental pollution due to the production of huge quantities of by-products from the oil extraction process. A phytoremediation technique (floating Vetiver system) was used to treat Palm Oil Mill Secondary Effluent (POMSE). A batch study using 40 L t...

متن کامل

Biohydrogen generation from palm oil mill effluent using anaerobic contact filter

In this study treatment of palm oil mill effluent was carried out with the intention to produce hydrogen during the anaerobic degradation process. The hydrogen generating microflora was isolated from the cow dung based on pH adjustment (pH 5) coupled with heat treatment (2 h). The microflora was initially tested for its hydrogen generating capability for varying fermentation pH of 4, 5, 6 and 7...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014